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Multiple nonequilibrium steady states for one-dimensional heat flow
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A nonequilibrium molecular dynamics model of heat flow in one-dimensional lattices is shown to have
multiple steady states for any fixed heat field strengthf e ranging from zero to a certain positive value. We
demonstrate that, depending on the initial conditions, there are at least two possibilities for the system’s
evolution: ~i! formation of a stable traveling wave~soliton!, and ~ii ! chaotic motion throughout the entire
simulation. The percentage of the soliton-generating trajectories is zero for small field strengthf e , but in-
creases sharply to unity over a critical region of the parameterf e .
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In recent years, the study of nonequilibrium statistical m
chanics systems has attracted increasing attention. In par
lar, nonequilibrium molecular dynamics~NEMD! simula-
tions of many-body systems have flourished@1–8#. In a
NEMD system, an external~driving! force is coupled to the
particle system and a thermostat then used to keep the
tem’s temperature or total internal energy constant. The
ternal force and the thermostat are usually modeled as d
ministic modifications of the equations of motion; th
thermostat removes~on average! excessive heat from th
system. As a result, the NEMD system is typically determ
istic, time reversible, and dissipative. In such a system
sum of all the Lyapunov exponents is negative, signifyi
the collapse of the comoving phase-space volume onto e
a strange chaotic attractor or a limit cycle. In the long tim
limit, the NEMD system dynamics usually reaches a ste
state and its trajectory eventually settles onto a fractal ob
in its associated phase space. In computer simulations
theoretical analysis@1–8# of NEMD systems it is very im-
portant to knowwhether the NEMD steady state is uniq
~especially for small fields! in the sense that all trajectorie
no matter what the initial conditions are, settle onto the sa
attractor, be it chaotic or otherwise.

In this paper, we demonstrate that the steady state
NEMD system can benonuniqueeven for vanishingly smal
fields. This is in sharp contrast to all previous numeri
observations and theoretical assumptions. Using the Eva
NEMD heat flow algorithm@1,6# for the computation of the
heat conductivity for a one-dimensional~1D! lattice of inter-
acting particles@7,8#, as an example, we show that for ea
applied field strengthf e ranging from 0 tof C2 ~see following
discussions! the system dynamics may either converge to
solitary wave~or loosely speaking, a soliton! within a finite
time, or dwell on a low-dimensional chaotic attractor duri
the entire~long time! simulation. The final state depends o
the initial conditions that are chosen randomly from t
phase space. The probability of observing a soliton-state v
ishes for smallf e , but exhibits a sharp transition from zer
to unity over a critical parameter region off e . We show that
the soliton corresponds to an exact solution for a trave
wave of the lattice, and that its shape, velocity, and am
tude can be determined from a differential-difference eq
tion. These findings suggest that multiple nonequilibriu
1063-651X/2001/64~2!/021102~5!/$20.00 64 0211
-
u-

ys-
x-
er-

-
e

er

y
ct
nd

e

a

l
s’s

a

n-

g
i-
-

steady states should not be ignored in future computer si
lations and theoretical studies of nonequilibrium systems

We consider the NEMD equations of motion for heat flo
in 1D lattices@1,6–8#:

q̇i5pi /m,

ṗi5U8~qi 112qi !2U8~qi2qi 21!1 f eDi2api . ~1!

Herem is thei th particle’s mass,qi the displacement, andpi
the corresponding momentum; the functionU represents the
nearest-neighbor interparticle interaction potential; thef eDi
andapi terms model a heat field and a constant-energy th
mostat, respectively, where

Di52
1

2
@U8~qi 112qi !1U8~qi2qi 21!#

1
1

N (
j 51

N

U8~qj 112qj !, ~2!

and

a5
f e

2K (
i 51

N
pi

m
Di , K5

1

2 (
i 51

N pi
2

m
. ~3!

Note that the system’s internal energy

H5(
i 51

N F 1

2m
pi

21U~qi 112qi !G ~4!

is constant along a trajectory because from Eqs.~1!–~3!
dH/dt[0. This is in comparison with the constan
temperature thermostat used in previous studies@7,8#. With-
out the thermostat, the system’s internal energy would
crease gradually~for f eÞ0) and eventually cause numeric
overflow in the computer simulations.

Like many other NEMD systems, system~1! is determin-
istic and time reversible. The time reversibility is inherited
from the original Newtonian dynamics: at any point of
trajectory, if the signs of the velocities of all the particles a
changed while their coordinates remain the same, then
particles, which move according to the dynamical syst
©2001 The American Physical Society02-1
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~1!, will trace back their positions exactly. For a mathema
cal definition of time reversibility, see Ref.@1#, p. 183, Eq.
~7.50!.

The idea of the NEMD simulation is to calculate the the
mal conductivity coefficient of the lattice by using the fo
lowing formula:

l5 lim
f e→0

lim
t→`

^Jx~ t !&
T fe

, ~5!

whereT is system’s temperature,Jx(t) is the heat flux,

Jx~ t !52
1

N (
i

pi

2m
@U8~qi 112qi !1U8~qi2qi 21!#,

~6!

and the quantitŷJx(t)& in Eq. ~5! is, in principle, a nonequi-
librium ensemble average. As pointed out in the literature
~e.g.,@1#!, this heat flow algorithm is valid in the weak fiel
regime, i.e.,f e→0. In the strong field regime there is n
known physical meaning or interpretation for the quanti
limt→`^Jx(t)&/(T fe).

In many previous simulations@1,2,4–8# the nonequilib-
rium steady state was assumed to be unique~i.e., indepen-
dent of the initial conditions!, thus the ensemble average
Jx(t) was replaced by a long time average. Moreover, in
fluctuation theorems of Evans and Searles@4# and the chaotic
hypothesis of Gallavotti and Cohen@5#, it is also assumed
that the nonequilibrium steady state is generally unique
chaotic. However, in the following we will show that th
present NEMD system can support at least two differ
types of steady states, the soliton and strange chaotic at
tor, even for arbitrarily small external fieldf e .

Soliton solutions

In order to show that Eq.~1! admits traveling wave or
soliton solutions for anyf e>0, we introduce a variableQi
5qi2qi 21 and we setm51 without loss of generality.
From Eq.~1! we can readily obtain

Q̈i5U8~Qi 11!22U8~Qi !1U8~Qi 21!2
1

2
f e@U8~Qi 11!

2U8~Qi 21!#2aQ̇i . ~7!

Taking into account the cyclic boundary conditions us
for Eqs. ~1!, we find that the transformationqi2qi 215Qi ,
i 51,2, . . . ,N, has an inverse:q(t)5B•Q(t), where q(t)
5(q1 ,q2 , . . . ,qN)T andQ(t)5(Q1 ,Q2 , . . . ,QN)T are col-
umn vectors, andB is anN3N matrix,
02110
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4 . ~8!

Substituting this into Eq.~3! we obtain

a[a~Q,Q̇!52
1

2
f e

Q̇TBT
•D

Q̇TBTBQ̇
, ~9!

whereD is a column vector with@U8(Qj 11)1U8(Qj )# be-
ing its j th element (1< j <N).

Equations~7! and~9! form a closed set of lattice dynam
ics equations for$Qi(t),1< i<N%. Furthermore, we can see
solutions of the formQi(t)5Q( i 2Vt)[Q(z) for traveling
waves. Substituting this ansatz into Eq.~7! we obtain a non-
linear differential-difference equation,

V2Q9~z!5U8@Q~z11!#22U8@Q~z!#1U8@Q~z21!#

2
1

2
f e@U8$Q~z11!%2U8$Q~z21!%#

1a~z!VQ8~z!, ~10!

for all zP@0,N#. Periodic boundary conditions require th
Q(0)5Q(N), and the condition( i 51

N Qi(t)[0, implies that
*0

NQ(z)dz[0.
If f e50, the system simplifies to a 1D Hamiltonian la

tice, and its corresponding differential-difference equat
~10! may be solved analytically, at least for some neare
neighbor interaction potentials, such as the Toda poten
@9#. However, in the casef eÞ0 and a(z)Þ0, it does not
seem possible to find an exact analytical solution for E
~10!. Here we use a numerical approach. We discretize
~10! by a finite difference method, and solve the resulti
nonlinear equations by Newton’s iteration method start
with an approximate solitary wave solution for the corr
sponding Hamiltonian system@9,10#. In this paper we focus
on the well-known Fermi, Pasta, and Ulamb model that
represents a 1D nonlinear lattice of widespread interest@11–
13#. The interparticle interaction potential isU(Q)5 1

2 Q2

1 1
4 bQ4, b51. The soliton’s configuration and its velocity

amplitude relationship for various values off e are obtained
from Eq. ~10!.

In order to check that the solitons are indeed solutions
Eq. ~1!, direct numerical simulations of Eq.~1! are carried
out with the solitons configuration being the initial cond
tions for (pi ,qi). We find that the solitons are very stab
2-2
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and travel in the system with apreserved shape and veloci
for any field strength 0< f e<0.01. An example of such a
soliton is shown in Fig. 1. Furthermore, by initializing mo
than one soliton in the initial conditions, we observe that
system supports multiple solitons of equal velocity.~If their
velocities are different, the faster solitons will catch up to t
slower ones and consume them during interactions.! Thus
single and multiple solitons of equal velocity are stea
states of this system.

Simulation results

However, if the system starts fromrandom initial condi-
tions what kind of steady state will it eventually reach?
answer this question, we have carried out extensive num
cal simulations. Equations~1! are integrated using a fourth
order operator-splitting integrator@14# with a time-step size
dt50.002. Periodic boundary conditions, i.e.,qN115q1 ,
pN115p1, are used. Unless indicated otherwise, the ini
conditions forqi andpi are always prepared in the followin
way: initial values forqi and pi are randomly assigned an
then rescaled to fix the system’s energy to its given ini
value, with the total momentum and the center of mass of
system being zero~thus they can remain so in the subsequ
simulation!. Then, a 106 time-step equilibrium simulation
~Hamiltonian casef e50) is made to reach a phase poi
@15#, from which the nonequilibrium simulation of Eq.~1!
for a nonzero external field strength is generated for a fur
53107 steps~i.e., 105 time units!.

One of the most striking features to note is that for a giv
particle numberN, and internal energy per particle,Ep
5H/N, the system dynamics behavior depends both on
initial conditions and the field strengthf e , and can be clas
sified into two distinct types: spontaneous formation o
stable soliton, or chaotic dynamics throughout the simulat
~see Fig. 2!. Moreover, we have observed that in every ca
once a soliton is generated it never disappears but trave

FIG. 1. The evolution ofQi(t)5qi 11(t)2qi(t) showing the
propagation of a soliton with a constant velocityVs'1.8 in system
~1! when the initial conditions are taken as the traveling wave
lution of the differential-difference equation~10!. The snapshot is
taken everyDt51000 time units, during which the soliton has tra
eled about 1800 lattice sites~to the right!, or 36 rounds in the
periodic lattice. Here the field strength isf e50.003. All units are
dimensionless for the quantities plotted in this and other figure
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the system for the entire length of the simulation run. T
means that the transition from a chaotic to a soliton stat
an irreversible process despite the equations of motion~1!
being time reversible. We have verified that, unlike the si
ation for chaotic dynamics, the largest Lyapunov expon
for the soliton states is zero within statistical uncertainti
Therefore, the solitons are dynamically stable periodic orb
of this nonequilibrium system.

For a given field strength, there is a certain set of traj
tories from which a soliton can emerge spontaneously. T
probability of finding a soliton trajectory, denoted asPS , is
plotted in Fig. 3 as a function of the field strength. Here ea
data point is calculated from 20 sample trajectories t
started from different random initial conditions. We obser
that when f e is smaller than a certain critical valuef C1
'0.0040, there is no spontaneous formation of solitons st
ing from the random initial conditions, thus the observ
probability PS is zero by definition~This does not mean tha
the soliton is not a solution of the system. In fact, a solit
can be observed if started from the right initial conditions

-

FIG. 2. The evolution ofQi(t)5qi 11(t)2qi(t) showing two
types of steady state for system~1! with different random initial
conditions:~a! spontaneous and irreversible formation of a solit
with a constant velocityVs'2.9, and ~b! chaos throughout the
simulation. Heref e50.0045, andEp51.0. Due to the symmetry o
the equations of motion a soliton’s maximum amplitude inQi can
be either positive or negative.

FIG. 3. The probabilityPS and the average transient time^TS&
for soliton formation, as a function of the applied field strengthf e .
The circles, stars, and triangles are for systems of 50, 100, and
particles, respectively. This figure shows qualitatively that there
multiple steady states in the system.
2-3
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see previous discussion.! When f e is greater than anothe
critical value f C2'0.0047 thePS becomes unity. A sharp
transition is seen inPS over the critical region (f C1 , f C2) of
the field strength. We find that while this behavior is qua
tatively the same for different system sizeN, the chaos-
soliton transition becomes sharper as the system size i
creased.

Note that the values forPS are estimated based on 2
sample trajectories and for agivenvery long but finite simu-
lation time of 105 ~these limits are imposed by finite com
puter resources!. We believe that increasing the time leng
and the number of sample trajectories will not change
results of Fig. 3 qualitatively. The values forPS would be
increased a little bit foreveryfield strengthf e smaller than
f C2'0.0047, and the kinked curve forPS will be slightly
shifted towards the left if the simulation time is increased

The transient time to generate a soliton from the rand
initial conditions, denoted asTS , depends strongly on bot
initial conditions and the field strength. But the ensem
average^TS& is nearly constant for large fields and yet
increases sharply when the field strength approaches
critical valuef C1 from the large field region~see Fig.3!. This
behavior suggests that it is very computer time-consumin
determine accurately the critical field strength,f C1, below
which the probability of soliton generation is zero. Forf e in
the critical region (0.004, f e,0.0047) the transient time
for soliton formation vary widely between 0 to 105, giving an
average valuêTS& much smaller than the upper limit (105)
as shown in the inset of Fig. 3.

The dynamics of this system can be summarized as
lows. For f e50, the unforced Hamiltonian~conservative!
system is nonergodic because it is chaotic for almost all r
dom initial conditions, but periodic~solitons! for certain spe-
cial initial conditions that form a set ofzero measure~see
also Refs.@11–13#!. For f e.0 the system is dissipative an
its comoving phase space shrinks~in dimension! as time
goes on. In particular, some phase points collapse on
low-dimension strange chaotic attractor, but others, wh
are sufficiently close to the soliton solution of the corr
-

p-

-
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sponding Hamiltonian system, will be attracted onto the s
ton solution of the dissipative system. The basin of attract
for the soliton grows asf e increases, and eventually occupi
the whole phase space whenf e crosses over a critical value

The present multiple steady state phenomenon is diffe
from the chaos-soliton transition phenomenon observed
viously for NEMD 2D fluid particle systems and for 1D
lattices of heat conduction with constant-temperature th
mostat@6,8#. The latter systems were shown to be chaotic
small f e and solitonic for largef e , but their steady state
appeared to be unique for afixedheat field strength no matte
what the initial conditions are. Furthermore, in the pres
paper, the multiple steady states exist for a fixed arbitra
small field parameter, where both linear and nonlinear
sponses can be observed. This behavior is in contrast to
instability induced multiple steady states in hydrodynami
In the latter case, the system must contain a large numbe
particles~e.g., about 50 000 particles were used in Ref.@16#!;
and the field parameters must exceed certain large cri
values where the system responses become entirely no
ear. See Ref.@16# and references therein.

In conclusion, we have demonstrated that for a given h
field strengthf e, f C2 ~no matter how smallf e is! the non-
equilibrium heat flow system can reach either a solitonl
steady state or a chaotic attractor,depending on the initial
conditions.Further investigations are necessary in order
understand a number of related issues, including how
multiple steady state phenomenon is related to the div
gence of heat conductivities in 1D lattices@8,17–20#, how
the nonequilibrium fluctuation theories@4,5# should be modi-
fied to take into account the possibilities of multiple stea
state, and finally, how solitons may affect the heat cond
tion of quasi-one-dimensional needlelike crystals such
carbon nanotubes. See Refs.@21,22# for experimental mea-
surement of the heat conductivity of some needlelike cr
tals.

This work was supported by ARC Large Grant N
A69800064.
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